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Abstract

To advance the clean energy systems based on hydrogen, highly efficient and low-cost electrocatalysts
for the hydrogen evolution reaction (HER) are of paramount importance. In recent years, single atoms
embedded within 2-dimensional (2D) material substrates have emerged as exceptional catalysts for
HER. Graphtriyne, a 2D material due to its novel electronic properties is a promising substrate for
development of single atom catalysts. In this study, we employed density functional theory (DFT)
simulations to investigate the potential of transition metals (Fe, Co, Ni, Cu, and Zn) anchored on
graphtriyne quantum dot as single atom catalysts (SACs) for HER. Our results revealed that Zn and Ni
SACsanchored on graphtriyne quantum dot exhibit excellent HER performance. Additionally, we
calculated total density of states (TDOS), partial density of states (PDOS), HOMO, LUMO energies
and HOMO-LUMO energy gap for the proposed SACs. Our work presents a promising approach for
the development of HER catalysts, utilizing graphtriyne quantum dot as support material and
transition metal atoms (Fe, Co, Ni, Cu, and Zn) as the single atom centers.

1. Introduction

To resolve environmental issues such as water contamination and air pollution, significant focus has been
devoted to finding renewable energy sources to replace fossil fuels [ 1-4]. Hydrogen is considered an excellent
replacement due to its environmental friendliness and high calorific value [5, 6]. For the purpose of efficient
production of hydrogen, highly efficient hydrogen evolution reaction (HER) electrocatalysts, such as those with
high activity and long-term stability are required [7-9]. Although platinum is considered as the most effective
catalyst to facilitate HER, it is impractical for large-scale application. This is because of resource scarcity and high
cost of platinum [10—12]. Therefore, cheaper high-performance HER catalysts devoid of noble metals are
urgently required [13—15]. Transition metal-based catalysts, like transition metal phosphides [16, 17], transition
metal chalcogenides [18—22], and transition metal nitrides [23—25], have been shown to be electrochemically
active toward HER. However, their HER performance is currently inferior to that of Pt-based catalysts.
Consequently, it is of the utmost importance to enhance the activity of noble metal free catalysts for HER.

Single-atom catalysts (SACs) have attracted considerable interest in recent years due to their increased
activity and selectivity [26—29]. Two-dimensional nanosheets have unique structures and tunable electronic
properties which make them promising substrates for SACs [30-33]. The hybridization between the d-orbitals
of the embedded transition metals and the p-orbitals of the main group elements of the substrate has been
proved to be a viable technique for increasing catalytic performance [34—37]. Recently, Single atoms, such as Co,
Rh, and Ir, anchored on porphyrin-like graphene exhibited better CO, reduction catalytic activity [38].
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Graphene-supported Cu nanoparticles have been reported to greatly enhance CO, conversion compared to the
Cu(111)[39].

Graphtriyne (GTY) is a 2D carbon material in which each benzene ring is connected to each of six others
through a chain formed of three acetylenic linkages [40]. With the correct pore size and acetylene bond, metal
atoms may be stably incorporated in GTY.

In this study, we aim to investigate the electrocatalytic performance of transition metal atoms anchored on
graphtriyne quantum dot support (TM@GTY) as single atom catalysts for the hydrogen evolution reaction
(HER). Utilizing transition metal atoms (Fe, Co, Ni, Cu and Zn) embedded in the pores of graphtriyne quantum
dot, we designed a series of single atom catalysts and examined their performance for HER using first principles
density functional theory simulations. The outcomes of our work are anticipated to furnish a deeper
understanding of the potential for developing highly efficient and cost-effective single atom catalysts for the
hydrogen evolution reaction (HER). The results from this study will be valuable in guiding the exploration of
new catalysts for hydrogen production and identifying the most promising candidates for further
experimentation and development.

2. Computational methodology

All quantum chemical calculations were performed using density functional theory with ORCA 5.0 program
package [41,42]. The geometric relaxations and vibrational analysis of all structures were carried out at spin-
polarized density functional theory using wB97X-D3 hybrid functional [43] and triple- basis set def2-TZVP,
[44] together with the RIJCOSX approximation and the auxiliary basis set def2 /] [45, 46]. The convergence
tolerances for the geometry optimization were as follows: energy change = 5.0 x 10~ ° Eh, maximal

gradient = 3.0 x 10~ * Eh/Bohr, RMS gradient = 1.0 x 10~ * Eh/Bohr, maximal displacement = 4.0 x 10>
Bohr, and RMS displacement = 2.0 x 10~ * Bohr. The wB97X-D3 functional incorporates improved dispersion
and long-range corrections and was selected to account for noncovalent interactions. From vibrational analysis
it was ascertained that no imaginary frequencies in the optimized geometries. Then the optimized geometries
were further subjected to single point energies calculations at PWPB95-D3/def2-TZVPP level of theory [47]
utilizing the RIJCOSX approximation for Coulomb and Hartree—Fock exchange with the def2 /] and def2-
TZVPP/C auxiliary basis sets [48]. In order to achieve highly accurate energies, we employed the double hybrid
meta-GGA density functional theory (DFT) functional PWPB95-D3 for single point energy simulations. This
functional has been shown to provide exceptional accuracy in energy predictions, [49] making it an ideal choice
for our calculations. The atom-pairwise dispersion correction was applied in all calculations using the Becke—
Johnson damping scheme (D3BJ), as prescribed by Grimme et al [50, 51] This was implemented to enhance the
reliability of our simulations, particularly in capturing van der Waals interactions. Multiwfn [52] was used to
generate density of states (DOS) spectra and VMD [53] was employed for visualization of the molecular orbitals.

3. Results and discussion

As depicted in figure 1, the graphtriyne quantum dot, which consists of the formula Cs,H, 4, has been optimized
by terminating its edges with hydrogen atoms to mitigate the impact of dangling bonds thereby significantly
stabilizing the structure. It is worth noting that omitting this step of hydrogen termination would lead to the
presence of highly reactive unpaired electrons associated with the carbon atoms at the edges [54]. These dangling
bonds could introduce localized states within the energy gap, which would potentially disrupt the electronic
properties and induce non-negligible deviations in the performance of the quantum dot. Such deviations could
manifest as higher reactivity. Moreover, the absence of hydrogen termination could compromise
thermodynamic stability. Therefore, hydrogen termination serves as a vital step in the design of a stable and
functionally reliable graphtriyne quantum dot. [55] The initial geometry of graphtriyne quantum dot was
designed in Avogadro software [56]. After geometry optimization, the structure of the graphtriyne quantum dot
exhibits four distinct C-C bonds. These are the C(sp)-C(sp) bond (between two adjacent triple bonds), which has
acomputed bond length of 1.37 A; aromatic C(sp*)-C(sp®) bond (1.40 A); C(sp*)-C(sp) bond (1.42 A); and the
triple bonds with computed bond length of 1.20 A. These calculated bond lengths of our designed graphtriyne
quantum dot are in close agreement with graphtriyne unit cell derived from periodic DFT simulations reported
in the existing literature [57, 58]. To design SACs, the metal atom (Fe, CO, Ni, Cu, and Zn) was embedded in the
graphtriyne pore without disturbing the optimized structure of the pristine graphtriyne substrate. First, spin
polarized DFT calculations were carried out in order to identify which spin state of the transition metal doped
graphtriyne (TM@GTY) SACs is the most stable. Structures with the lowest energy, i.e., the most stable ones,
were then subjected to further investigation in this work. The relative stabilities of the different spin states of Fe—
Zn doped on graphtriyne quantum dot are shown in table 1. Fe@GTY prefers quintet spin state multiplicity
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Figure 1. Optimized geometries of pristine and transition metal embedded graphtriyne quantum dots.

Table 1. Relative stabilities of different spin states of Fe-Zn doped on graphtriyne quantum dot (energies in eV).

System Most Stable 2" Stable 3™ Stable 4" Stable

Fe@GTY 0.00 (Quintet) 1.94 (Tripler) 2.41 (Septet) 3.34 (Singlet)
Co@GTY 0.00 (Doublet) 1.37 (Quartet) 2.62 (Sextet) 5.52 (Octet)
Ni@GTY 0.00 (Singlet) 1.68 (Triplet) 3.95 (Quintet) 7.19 (Septet)
Cu@GTY 0.00 (Doublet) 0.98 (Quartet) 5.51 (Sextet) 7.97 (Octet)
Zn@GTY 0.00 (Singlet) 3.34 (Triplet) 6.89 (Quintet) 9.89 (Septet)

while Ni@GTY and Zn@GTY exhibits singlet as the most stable spin state. For Co@GTY and Cu@GTY
complexes, doublet is the most stable spin multiplicity. Additionally, vibrational analysis was conducted to
confirm that there are no imaginary frequencies in the optimized geometries of the designed SACs and all the
reported structures represent true minima on the potential energy surface.
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Table 2. Interaction energies (E;, in kcal mol™!), HOMO
energies (Ejomo in eV), LUMO energies (Erymo in eV), and
HOMO-LUMO gap (Eg,p, ineV).

System Eine Enomo Erumo Egap
GTY — —6.68 —1.89 4.79
Fe@GTY —76.35 —4.46 —1.93 2.53
Co@GTY —5.97 —6.70 —1.91 4.78
Ni@GTY —78.25 —6.23 —1.82 4.40
Cu@GTY —4.78 —4.70 —1.91 2.79
Zn@GTY —3.40 —6.09 —1.91 4.18

To evaluate the thermodynamic stability of the transition-metal@graphtriyne single atom catalysts
(TM@GTY SACs), we computed the interaction energies of Fe-Zn embedded graphtriyne composites. The
results from table 2 reveals negative interaction energies for all TM@GTY SACs. The negative interaction
energies are evidence for the thermodynamic stability of our designed SACs. Nianchored on graphtriyne
(Ni@GTY) has the highest interaction energy of —78.25 kcal mol . This is followed by Fe doped graphtriyne
(Fe@GTY) interaction energy of —76.35 kcal mol . The interaction energy for Co@GTY, Cu@GTY, and
Zn@GTY are —5.97, —4.78, and —3.40 kcal mol "', Ni@GTY and Fe@GTY SACs exhibit the most negative
interaction energies, indicating a strong chemical interaction or chemisorption between the metal atom and the
graphtriyne quantum dot. Chemisorption entails a strong chemical bond formation between the adsorbate
(transition metal atoms (Niand Fe) in this case) and the substrate (graphtriyne quantum dot). This process is
largely dictated by the electronic structure compatibility and the associated orbital interactions between the two
entities. The interaction energies serve as a pivotal metric for assessing this and the markedly negative interaction
energies of Ni@GTY and Fe@GTY elucidate chemisorption. Nialmost certainly has and'°(n+1)s°
configuration, and the empty s orbital allows it to bind strongly to the graphtriyne surface. While Fe has
unpaired d-electrons that can form stronger covalent bonds with the carbon atoms of the graphtriyne quantum
dot. The higher negative interaction energies of Ni@GTY and Fe@GTY SACs also reveals that these complexes
are the most stable. While others suffer from low interaction energies, making them less stable as a result. The
geometry of graphtriyne quantum dot remained unaffected from the doping of transition metals except for
Ni@GTY in which the GTY structure is slightly distorted. The Niatom has a small interaction distance with the
graphtriyne quantum dot and interacts strongly with neighboring carbon atoms causing distortion in the
graphtriyne geometry around the dopant.

To understand the influence of transition metal doping on the electronic properties of the graphtriyne
quantum dot, we performed a frontier molecular orbitals (FMO) analysis. This analysis allowed us to compute
the energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) and to visualize their isodensities. The HOMO-LUMO energy gap, which is the energy difference
between these two orbitals, is an important parameter in determining the electronic conductivity of a material.
The FMO analysis provides a detailed understanding of the electronic structures of the transition metal doped
graphtriyne quantum dots and thus enables the evaluation of the influence of transition metal doping on the
graphtriyne. From figure 2, Pi orbitals are present in both the HOMO and LUMO levels of the pure graphtriyne.
The electronic density of the HOMO of the Ni@GTY reveals presence of the xy type of d orbital on the Ni atom.
While Co@GTY does not have any HOMO density on the metal. Fe@GTY, Cu@GTY, and Zn@GTY contain
s-orbital density in their HOMO on the metal atoms. The analysis of the lowest unoccupied molecular orbital
(LUMO) revealed that, except for Ni, none of the other transition metals introduce any electronic density to the
graphtriyne quantum dot. The density of the GTY remains unchanged after the doping of a single metal atom.
However, in the case of Ni@GTY, the density is concentrated on the side of the GTY that contains the Ni single
metal atom. This suggests that the doping of Ni single metal atom perturbs the electronic density distribution in
the LUMO of the graphtriyne.

The analysis of the electronic properties of the pristine graphtriyne quantum dot (Cs,H; 4) revealed that the
energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) (Eg,,) is 4.79 eV. The HOMO and LUMO energies are —6.68 eV and —1.89 eV, respectively.
However, upon doping with Fe and Cu transition metal atoms, the E,;, is significantly reduced. The greatest
reduction in the energy gap is observed after doping with Fe atom. This reduction in the energy gap suggests that
the Fe and Cu metal atoms significantly influence the electronic structure of the graphtriyne quantum dot and
could increase its electronic conductivity. The Eg,, in case of Fe@GTY is reduced to 2.53 eV and for Cu@GTY
Eg.pisreduced to 2.79 eV. The E,,, remains almost unchanged (4.78 V) in case of doping of Co atom. Slight
reduction in the E,, is observed for Ni@GTY (4.40 eV) and Zn@GTY (4.18 eV). The anchoring of Fe and Cu
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System HOMO LUMO

Graphtriyne

Fe@GTY

Co@GTY

Ni@GTY

Cu@GTY
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Figure 2. Isodensities of HOMO and LUMO of the Pure and transition metal embedded graphtriyne quantum dots.
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Figure 3. Total and partial density of states of TM@GTY SACs.
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single atoms results in an increase in the energy of the HOMO level, which is responsible for the significant
narrowing of the Ey,, of Fe@GTY and Cu@GTY SACs.
Figure 3 illustrates the TM@GTY complexes’ total density of states (TDOS) as well as their partial density of
states (PDOS). In the Fe@GTY, Cu@GTY, and Zn@GTY, the HOMO density is almost all concentrated on the
single metal atom. The Niatom in the Ni@GTY composite also has some contribution in the HOMO electronic
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Figure 4. Optimized geometries of H" adsorbed SACs.

Table 3. Adsorption energies (E,q), Free energy change of adsorbed H
(AGp*), HOMO energies (Egomo), LUMO energies (E; yyo), and HOMO—-
LUMO gap (E,y). (All energies are in eV).

System Eaa AGy* Enomo Erumo Egap
H*-Fe@GTY —2.99 —2.39 —6.62 —1.86 4.76
H*-Co@GTY —3.26 —2.66 —6.54 —1.84 4.70
H*-Ni@GTY —1.90 —1.07 —6.72 —2.03 4.69
H*-Cu@GTY —3.53 —2.93 —6.70 —2.13 4.57
H*-Zn@GTY —0.81 —0.48 —5.15 —1.95 3.20

density. On the other hand, graphtriyne makes the most significant contribution to the occupied frontier
molecular orbital in the Co@GTY, whereas transition metals’ major contribution peaks appear at lower energy
levels than HOMO.

Figure 4 illustrates the adsorption of atomic hydrogen on TM@GTY single atom catalysts, and table 3
provides a listing of the calculated adsorption energies for each of the catalysts. The computed adsorption energy
for atomic hydrogen adsorption on Zn@GTY single atom catalystis —0.81 eV, and as a result of its low hydrogen
adsorption energy, itis anticipated that Zn@GTY will better catalyze the hydrogen evolution reaction. Ni@GTY
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SAC has the second lowest adsorption energy for the adsorption of hydrogen (—1.90 eV). The computed atomic
hydrogen adsorption energies on Fe@GTY, Co@GTY, and Cu@GTY are —2.99 eV, —3.26 eV, and —3.53 €V,
respectively.

The hydrogen evolution reaction process is defined as follows under standard conditions:

1
H(aq) + e~ — EHZ(g)

The overall process of hydrogen evolution reaction (HER) is connected by the H"(aq) + e, intermediate H”
and the product %Hz(g). Using the theoretical hydrogen electrode model, the chemical potential of the H" + e~
pair can be determined by equating it to one half of the chemical potential of the hydrogen (H,). Therefore, the
free energy of atomic hydrogen adsorbed on the surface of the catalyst (AGy+ of H) is considered as the key
descriptor for assessing performance of the catalysts in hydrogen evolution reaction. This descriptor is essential
for understanding the thermodynamic feasibility of the HER process and the ability of the electrocatalyst to
facilitate the adsorption and desorption of hydrogen atoms. The following expression describes the change in
hydrogen’s free energy in its adsorbed state:

AGy* = Euq + AEzpr — TASh

Here H" represents the adsorbed hydrogen, E,q represents the adsorption energy of hydrogen, and AEzpg
represents the change in zero-point energy between the adsorbed and gaseous forms of hydrogen. Additionally,
the term (T ASy) accounts for the entropy contribution of adsorbed hydrogen at a temperature of 298 K. It is
essential to understand the thermodynamic factors that influence the adsorption of atomic hydrogen on the
catalyst surface to optimize the catalytic activity of materials for the hydrogen evolution reaction.

A high value for AGy+ in the positive range implies that the process of adsorbing hydrogen onto the catalyst
surface is energetically unfavorable. Conversely, a high value for AGy* in the negative range implies that the
process of releasing adsorbed hydrogen from the catalyst is energetically challenging. High values of AGy+ in
both positive and negative range inhibit the activity of the HER catalyst. Therefore, for an efficient HER
electrocatalyst, the value of AGy* should be as close to zero as possible. In this study, we estimated AGy+* of
hydrogen adsorption on TM@GTY single atom catalysts to determine the HER catalytic response of transition
metal SACs anchored on graphtriyne. This allowed us to evaluate the HER catalytic performance of the proposed
catalysts and identify the most promising candidates for efficiently catalyzing the HER process.

From table 3, since the AGy* value of Zn@GTY (—0.48 eV) is closer to the ideal value (AGy* =0eV), the
adsorption of hydrogen and the release of hydrogen from the catalyst surface will be an easy and efficient process.
This is because the AGy* value of Zn@GTY is closer to the ideal value for HER process. As a result, the optimum
catalytic performance for the HER process is provided by the Zn single atom anchored on graphtriyne quantum
dot. Ni@GTY catalyst has also low AGy* value (—1.07 eV). Therefore, Ni@GTY can also show better catalytic
activity for HER. Our findings indicate that Zn@GTY and Ni@GTY single atom catalysts exhibit superior HER
catalytic performance when compared to other catalysts such as hydrogen on coronene and pyrene polycyclic
aromatic hydrocarbons (PAHs), as their reported adsorption energies fall within the range of 0.6—1.4 and 0.6
—1.6 eV, respectively [59]. These results suggest that Zn@GTY and Ni@GTY SACs may be considered as
promising candidates for effectively catalyzing the hydrogen evolution reaction. The superior performance of
these catalysts highlights the potential of graphtriyne quantum dot as a support material and transition metal
atoms as single atom centers for the development of highly efficient and low-cost electrocatalysts for the
hydrogen evolution reaction.

The estimated AGyy* values for Fe@GTY, Co@GTY, and Cu@GTY are —2.39 eV, —2.66 eV, and —2.93 eV,
respectively. These high negative values of AGy* suggests that hydrogen is chemisorbed and that the process of
releasing it is difficult. As a result, the Fe@GTY, Co@GTY, and Cu@GTY have poor efficiency for HER catalysis.

In comparison with existing literature on metal-doped graphynes, our study on metal @GTY catalysts builds
upon the foundational works reviewed by Li et al, [60] and Song et al, [61] who primarily focus on metal @GDY
catalysts. Our findings align with previous investigations into the electrocatalytic benefits of metal-doping in
graphyne and its analogues. Specifically, our work can be contextualized alongside the research conducted by
Xue et al in 2018, where Ni’/GDY and Fe’/GDY electrocatalysts were synthesized and evaluated for their
hydrogen evolution reaction (HER) performance [62]. Xue ef al reported high catalytic activities for both
Ni’/GDY and Fe’/GDY. In our study, Ni@GTY also demonstrated improved HER performance, corroborating
the findings of Xue et al However, it is noteworthy that Fe@GTY exhibited suboptimal activity for HER in our
system, diverging from the high performance observed for Fe”/GDY in their study. This discrepancy potentially
highlights the sensitivity of HER performance to the specific structure and electronic configurations of the
graphyne framework.

In order to investigate the interaction between the adsorbed H"* and the TM@GTY single atom catalysts, we
conducted density of states (DOS) and frontier molecular orbitals (FMO) analyses. Figure 5 shows the DOS
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spectra of the H*-TM@GTY complexes, and figure 6 provides a graphical representation of the frontier

molecular orbitals (HOMO and LUMO). The interaction between the H* and TM@GTY SACs leads to
variations in the HOMO-LUMO energy gap (E,,,) and in the DOS spectrum. The DOS spectra of the

H*-TM@GTY complexes clearly show that, after hydrogen adsorption, additional peaks appear for hydrogen at

the Fermi level or slightly below it, indicating the adsorption of H* on the TM@GTY.
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System

H*-

Ni@GTY

H"-

Cu@GTY

H'-

Figure 6. Isodensities of HOMO and LUMO of H*-TM@GTY.

Asaresult of the interaction between H" and the Zn@GTY catalyst, the HOMO-LUMO gap (Eg,p,) is
significantly reduced from 4.18 eV to 3.20 eV. Conversely, the Eg,, for Fe@GTY and Cu@GTY is significantly
widened after the adsorption of hydrogen while slight variations in Eg,,, is observed for Co@GTY and Ni@GTY.
As can be seen in the illustration of the HOMO orbital of H*-Ni@GTY, H*-Cu@GTY, and H*-Zn@GTY
complexes, both the adsorbed H* atom and the metal atom have HOMO orbital’s electronic density. However,
in the case of H*-Cu@GTY and H"-Zn@GTY complexes, there is no HOMO orbital’s electronic density on the
graphtriyne. For H*-Fe@GTY and H"-Co@GTY complexes, the HOMO orbital’s electronic density is
completely from the TM@GTY and absent from the adsorbed hydrogen.
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4. Conclusions

This study employed first principles density functional theory simulations to investigate the potential of single
transition metal atoms anchored on graphtriyne quantum dots as catalysts for the hydrogen evolution reaction
(HER). By utilizing five transition metals (Fe, Co, Ni, Cu, and Zn) as single atom centers and graphtriyne
quantum dot as a support material, we designed a series of single atom catalysts (SACs) and examined their
electronic structures and HER catalytic performance. Our results indicate that the TM@GTY SACs exhibit good
stability, with the highest interaction energy observed for Ni@GTY SAC (—78.25 kcal mol ') followed by
Fe@GTY (—76.35 kcal mol ). Furthermore, the Zn@GTY and Ni@GTY SACs displayed excellent HER
performance, with small AGH” values of —0.48 eV and —1.07 eV, respectively. These findings suggest that
transition metal atoms supported on graphtriyne quantum dot may be a promising approach for the
development of low-cost HER catalysts. The results of this study may pave the way for further exploration of this
class of catalysts for hydrogen production.
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