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Abstract
To advance the clean energy systems based on hydrogen, highly efficient and low-cost electrocatalysts
for the hydrogen evolution reaction (HER) are of paramount importance. In recent years, single atoms
embeddedwithin 2-dimensional (2D)material substrates have emerged as exceptional catalysts for
HER.Graphtriyne, a 2Dmaterial due to its novel electronic properties is a promising substrate for
development of single atom catalysts. In this study, we employed density functional theory (DFT)
simulations to investigate the potential of transitionmetals (Fe, Co,Ni, Cu, andZn) anchored on
graphtriyne quantumdot as single atom catalysts (SACs) forHER.Our results revealed that Zn andNi
SACs anchored on graphtriyne quantumdot exhibit excellentHERperformance. Additionally, we
calculated total density of states (TDOS), partial density of states (PDOS), HOMO, LUMOenergies
andHOMO–LUMOenergy gap for the proposed SACs.Ourwork presents a promising approach for
the development ofHER catalysts, utilizing graphtriyne quantumdot as supportmaterial and
transitionmetal atoms (Fe, Co,Ni, Cu, andZn) as the single atom centers.

1. Introduction

To resolve environmental issues such as water contamination and air pollution, significant focus has been
devoted tofinding renewable energy sources to replace fossil fuels [1–4]. Hydrogen is considered an excellent
replacement due to its environmental friendliness and high calorific value [5, 6]. For the purpose of efficient
production of hydrogen, highly efficient hydrogen evolution reaction (HER) electrocatalysts, such as thosewith
high activity and long-term stability are required [7–9]. Although platinum is considered as themost effective
catalyst to facilitateHER, it is impractical for large-scale application. This is because of resource scarcity and high
cost of platinum [10–12]. Therefore, cheaper high-performanceHER catalysts devoid of noblemetals are
urgently required [13–15]. Transitionmetal-based catalysts, like transitionmetal phosphides [16, 17], transition
metal chalcogenides [18–22], and transitionmetal nitrides [23–25], have been shown to be electrochemically
active towardHER.However, theirHERperformance is currently inferior to that of Pt-based catalysts.
Consequently, it is of the utmost importance to enhance the activity of noblemetal free catalysts forHER.

Single-atom catalysts (SACs) have attracted considerable interest in recent years due to their increased
activity and selectivity [26–29]. Two-dimensional nanosheets have unique structures and tunable electronic
properties whichmake thempromising substrates for SACs [30–33]. The hybridization between the d-orbitals
of the embedded transitionmetals and the p-orbitals of themain group elements of the substrate has been
proved to be a viable technique for increasing catalytic performance [34–37]. Recently, Single atoms, such asCo,
Rh, and Ir, anchored on porphyrin-like graphene exhibited better CO2 reduction catalytic activity [38].
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Graphene-supportedCunanoparticles have been reported to greatly enhanceCO2 conversion compared to the
Cu(111) [39].

Graphtriyne (GTY) is a 2D carbonmaterial inwhich each benzene ring is connected to each of six others
through a chain formed of three acetylenic linkages [40].With the correct pore size and acetylene bond,metal
atomsmay be stably incorporated inGTY.

In this study, we aim to investigate the electrocatalytic performance of transitionmetal atoms anchored on
graphtriyne quantumdot support (TM@GTY) as single atom catalysts for the hydrogen evolution reaction
(HER). Utilizing transitionmetal atoms (Fe, Co,Ni, Cu andZn) embedded in the pores of graphtriyne quantum
dot, we designed a series of single atom catalysts and examined their performance forHERusing first principles
density functional theory simulations. The outcomes of our work are anticipated to furnish a deeper
understanding of the potential for developing highly efficient and cost-effective single atom catalysts for the
hydrogen evolution reaction (HER). The results from this studywill be valuable in guiding the exploration of
new catalysts for hydrogen production and identifying themost promising candidates for further
experimentation and development.

2. Computationalmethodology

All quantum chemical calculations were performed using density functional theory withORCA5.0 program
package [41, 42]. The geometric relaxations and vibrational analysis of all structures were carried out at spin-
polarized density functional theory usingωB97X-D3 hybrid functional [43] and triple-ζ basis set def2-TZVP,
[44] togetherwith theRIJCOSX approximation and the auxiliary basis set def2/J [45, 46]. The convergence
tolerances for the geometry optimizationwere as follows: energy change= 5.0× 10−6 Eh,maximal
gradient= 3.0× 10−4 Eh/Bohr, RMS gradient= 1.0× 10−4 Eh/Bohr,maximal displacement= 4.0× 10−3

Bohr, andRMSdisplacement= 2.0× 10−4 Bohr. TheωB97X-D3 functional incorporates improved dispersion
and long-range corrections andwas selected to account for noncovalent interactions. Fromvibrational analysis
it was ascertained that no imaginary frequencies in the optimized geometries. Then the optimized geometries
were further subjected to single point energies calculations at PWPB95-D3/def2-TZVPP level of theory [47]
utilizing the RIJCOSX approximation for Coulomb andHartree–Fock exchangewith the def2/J and def2-
TZVPP/C auxiliary basis sets [48]. In order to achieve highly accurate energies, we employed the double hybrid
meta-GGAdensity functional theory (DFT) functional PWPB95-D3 for single point energy simulations. This
functional has been shown to provide exceptional accuracy in energy predictions, [49]making it an ideal choice
for our calculations. The atom-pairwise dispersion correctionwas applied in all calculations using the Becke–
Johnson damping scheme (D3BJ), as prescribed byGrimme et al [50, 51]This was implemented to enhance the
reliability of our simulations, particularly in capturing van derWaals interactions.Multiwfn [52]was used to
generate density of states (DOS) spectra andVMD [53]was employed for visualization of themolecular orbitals.

3. Results and discussion

As depicted infigure 1, the graphtriyne quantumdot, which consists of the formula C54H14, has been optimized
by terminating its edges with hydrogen atoms tomitigate the impact of dangling bonds thereby significantly
stabilizing the structure. It is worth noting that omitting this step of hydrogen terminationwould lead to the
presence of highly reactive unpaired electrons associatedwith the carbon atoms at the edges [54]. These dangling
bonds could introduce localized states within the energy gap, whichwould potentially disrupt the electronic
properties and induce non-negligible deviations in the performance of the quantumdot. Such deviations could
manifest as higher reactivity.Moreover, the absence of hydrogen termination could compromise
thermodynamic stability. Therefore, hydrogen termination serves as a vital step in the design of a stable and
functionally reliable graphtriyne quantumdot. [55]The initial geometry of graphtriyne quantumdotwas
designed inAvogadro software [56]. After geometry optimization, the structure of the graphtriyne quantumdot
exhibits four distinct C-C bonds. These are theC(sp)-C(sp) bond (between two adjacent triple bonds), which has
a computed bond length of 1.37 Å; aromatic C(sp2)-C(sp2) bond (1.40 Å); C(sp2)-C(sp) bond (1.42 Å); and the
triple bondswith computed bond length of 1.20 Å. These calculated bond lengths of our designed graphtriyne
quantumdot are in close agreementwith graphtriyne unit cell derived fromperiodicDFT simulations reported
in the existing literature [57, 58]. To design SACs, themetal atom (Fe, CO,Ni, Cu, andZn)was embedded in the
graphtriyne porewithout disturbing the optimized structure of the pristine graphtriyne substrate. First, spin
polarizedDFT calculations were carried out in order to identify which spin state of the transitionmetal doped
graphtriyne (TM@GTY) SACs is themost stable. Structures with the lowest energy, i.e., themost stable ones,
were then subjected to further investigation in this work. The relative stabilities of the different spin states of Fe–
Zndoped on graphtriyne quantumdot are shown in table 1. Fe@GTYprefers quintet spin statemultiplicity
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whileNi@GTY andZn@GTY exhibits singlet as themost stable spin state. ForCo@GTY andCu@GTY
complexes, doublet is themost stable spinmultiplicity. Additionally, vibrational analysis was conducted to
confirm that there are no imaginary frequencies in the optimized geometries of the designed SACs and all the
reported structures represent trueminima on the potential energy surface.

Figure 1.Optimized geometries of pristine and transitionmetal embedded graphtriyne quantumdots.

Table 1.Relative stabilities of different spin states of Fe-Zn doped on graphtriyne quantumdot (energies in eV).

System Most Stable 2nd Stable 3rd Stable 4th Stable

Fe@GTY 0.00 (Quintet) 1.94 (Triplet) 2.41 (Septet) 3.34 (Singlet)
Co@GTY 0.00 (Doublet) 1.37 (Quartet) 2.62 (Sextet) 5.52 (Octet)
Ni@GTY 0.00 (Singlet) 1.68 (Triplet) 3.95 (Quintet) 7.19 (Septet)
Cu@GTY 0.00 (Doublet) 0.98 (Quartet) 5.51 (Sextet) 7.97 (Octet)
Zn@GTY 0.00 (Singlet) 3.34 (Triplet) 6.89 (Quintet) 9.89 (Septet)
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To evaluate the thermodynamic stability of the transition-metal@graphtriyne single atom catalysts
(TM@GTYSACs), we computed the interaction energies of Fe-Zn embedded graphtriyne composites. The
results from table 2 reveals negative interaction energies for all TM@GTYSACs. The negative interaction
energies are evidence for the thermodynamic stability of our designed SACs.Ni anchored on graphtriyne
(Ni@GTY) has the highest interaction energy of−78.25 kcal mol−1. This is followed by Fe doped graphtriyne
(Fe@GTY) interaction energy of−76.35 kcal mol−1. The interaction energy for Co@GTY, Cu@GTY, and
Zn@GTY are−5.97,−4.78, and−3.40 kcal mol−1. Ni@GTY and Fe@GTY SACs exhibit themost negative
interaction energies, indicating a strong chemical interaction or chemisorption between themetal atom and the
graphtriyne quantumdot. Chemisorption entails a strong chemical bond formation between the adsorbate
(transitionmetal atoms (Ni and Fe) in this case) and the substrate (graphtriyne quantumdot). This process is
largely dictated by the electronic structure compatibility and the associated orbital interactions between the two
entities. The interaction energies serve as a pivotalmetric for assessing this and themarkedly negative interaction
energies of Ni@GTY and Fe@GTY elucidate chemisorption. Ni almost certainly has a nd10(n+1)s0

configuration, and the empty s orbital allows it to bind strongly to the graphtriyne surface.While Fe has
unpaired d-electrons that can form stronger covalent bondswith the carbon atoms of the graphtriyne quantum
dot. The higher negative interaction energies ofNi@GTY and Fe@GTY SACs also reveals that these complexes
are themost stable.While others suffer from low interaction energies,making them less stable as a result. The
geometry of graphtriyne quantumdot remained unaffected from the doping of transitionmetals except for
Ni@GTY inwhich theGTY structure is slightly distorted. TheNi atomhas a small interaction distance with the
graphtriyne quantumdot and interacts stronglywith neighboring carbon atoms causing distortion in the
graphtriyne geometry around the dopant.

To understand the influence of transitionmetal doping on the electronic properties of the graphtriyne
quantumdot, we performed a frontiermolecular orbitals (FMO) analysis. This analysis allowed us to compute
the energies of the highest occupiedmolecular orbital (HOMO) and the lowest unoccupiedmolecular orbital
(LUMO) and to visualize their isodensities. TheHOMO–LUMOenergy gap, which is the energy difference
between these two orbitals, is an important parameter in determining the electronic conductivity of amaterial.
The FMOanalysis provides a detailed understanding of the electronic structures of the transitionmetal doped
graphtriyne quantumdots and thus enables the evaluation of the influence of transitionmetal doping on the
graphtriyne. Fromfigure 2, Pi orbitals are present in both theHOMOand LUMO levels of the pure graphtriyne.
The electronic density of theHOMOof theNi@GTY reveals presence of the xy type of d orbital on theNi atom.
While Co@GTYdoes not have anyHOMOdensity on themetal. Fe@GTY, Cu@GTY, andZn@GTY contain
s-orbital density in theirHOMOon themetal atoms. The analysis of the lowest unoccupiedmolecular orbital
(LUMO) revealed that, except forNi, none of the other transitionmetals introduce any electronic density to the
graphtriyne quantumdot. The density of theGTY remains unchanged after the doping of a singlemetal atom.
However, in the case ofNi@GTY, the density is concentrated on the side of theGTY that contains theNi single
metal atom. This suggests that the doping ofNi singlemetal atomperturbs the electronic density distribution in
the LUMOof the graphtriyne.

The analysis of the electronic properties of the pristine graphtriyne quantumdot (C54H14) revealed that the
energy gap between the highest occupiedmolecular orbital (HOMO) and the lowest unoccupiedmolecular
orbital (LUMO) (Egap) is 4.79 eV. TheHOMOand LUMOenergies are−6.68 eV and−1.89 eV, respectively.
However, upon dopingwith Fe andCu transitionmetal atoms, the Egap is significantly reduced. The greatest
reduction in the energy gap is observed after dopingwith Fe atom. This reduction in the energy gap suggests that
the Fe andCumetal atoms significantly influence the electronic structure of the graphtriyne quantumdot and
could increase its electronic conductivity. The Egap in case of Fe@GTY is reduced to 2.53 eV and for Cu@GTY
Egap is reduced to 2.79 eV. The Egap remains almost unchanged (4.78 eV) in case of doping of Co atom. Slight
reduction in the Egap is observed forNi@GTY (4.40 eV) andZn@GTY (4.18 eV). The anchoring of Fe andCu

Table 2. Interaction energies (Eint in kcalmol−1), HOMO
energies (EHOMO in eV), LUMOenergies (ELUMO in eV), and
HOMO–LUMOgap (Egap in eV).

System Eint EHOMO ELUMO Egap

GTY — −6.68 −1.89 4.79

Fe@GTY −76.35 −4.46 −1.93 2.53

Co@GTY −5.97 −6.70 −1.91 4.78

Ni@GTY −78.25 −6.23 −1.82 4.40

Cu@GTY −4.78 −4.70 −1.91 2.79

Zn@GTY −3.40 −6.09 −1.91 4.18
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Figure 2. Isodensities ofHOMOand LUMOof the Pure and transitionmetal embedded graphtriyne quantumdots.
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single atoms results in an increase in the energy of theHOMO level, which is responsible for the significant
narrowing of the Egap of Fe@GTY andCu@GTY SACs.

Figure 3 illustrates the TM@GTY complexes’ total density of states (TDOS) as well as their partial density of
states (PDOS). In the Fe@GTY, Cu@GTY, andZn@GTY, theHOMOdensity is almost all concentrated on the
singlemetal atom. TheNi atom in theNi@GTY composite also has some contribution in theHOMOelectronic

Figure 3.Total and partial density of states of TM@GTYSACs.
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density. On the other hand, graphtriynemakes themost significant contribution to the occupied frontier
molecular orbital in theCo@GTY, whereas transitionmetals’major contribution peaks appear at lower energy
levels thanHOMO.

Figure 4 illustrates the adsorption of atomic hydrogen onTM@GTY single atom catalysts, and table 3
provides a listing of the calculated adsorption energies for each of the catalysts. The computed adsorption energy
for atomic hydrogen adsorption onZn@GTY single atom catalyst is−0.81 eV, and as a result of its low hydrogen
adsorption energy, it is anticipated that Zn@GTYwill better catalyze the hydrogen evolution reaction.Ni@GTY

Figure 4.Optimized geometries ofH* adsorbed SACs.

Table 3.Adsorption energies (Ead), Free energy change of adsorbedH
*

( *GHD ), HOMOenergies (EHOMO), LUMOenergies (ELUMO), andHOMO–
LUMOgap (Egap). (All energies are in eV).

System Ead *GHD EHOMO ELUMO Egap

H*-Fe@GTY −2.99 −2.39 −6.62 −1.86 4.76

H*-Co@GTY −3.26 −2.66 −6.54 −1.84 4.70

H*-Ni@GTY −1.90 −1.07 −6.72 −2.03 4.69

H*-Cu@GTY −3.53 −2.93 −6.70 −2.13 4.57

H*-Zn@GTY −0.81 −0.48 −5.15 −1.95 3.20
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SAChas the second lowest adsorption energy for the adsorption of hydrogen (−1.90 eV). The computed atomic
hydrogen adsorption energies on Fe@GTY, Co@GTY, andCu@GTY are−2.99 eV,−3.26 eV, and−3.53 eV,
respectively.

The hydrogen evolution reaction process is defined as follows under standard conditions:

( ) ( )H aq e
1

2
H g2+ + -

The overall process of hydrogen evolution reaction (HER) is connected by the ( )H aq e ,++ - intermediateH*

and the product ( )H g .1

2 2 Using the theoretical hydrogen electrodemodel, the chemical potential of the H e++ -

pair can be determined by equating it to one half of the chemical potential of the hydrogen (H2). Therefore, the
free energy of atomic hydrogen adsorbed on the surface of the catalyst ( *GHD ofH*) is considered as the key
descriptor for assessing performance of the catalysts in hydrogen evolution reaction. This descriptor is essential
for understanding the thermodynamic feasibility of theHERprocess and the ability of the electrocatalyst to
facilitate the adsorption and desorption of hydrogen atoms. The following expression describes the change in
hydrogen’s free energy in its adsorbed state:

*G E E T SH ad ZPE HD = + D - D

HereH* represents the adsorbed hydrogen, Ead represents the adsorption energy of hydrogen, and EZPED
represents the change in zero-point energy between the adsorbed and gaseous forms of hydrogen. Additionally,
the term (T SHD ) accounts for the entropy contribution of adsorbed hydrogen at a temperature of 298 K. It is
essential to understand the thermodynamic factors that influence the adsorption of atomic hydrogen on the
catalyst surface to optimize the catalytic activity ofmaterials for the hydrogen evolution reaction.

A high value for *GHD in the positive range implies that the process of adsorbing hydrogen onto the catalyst
surface is energetically unfavorable. Conversely, a high value for *GHD in the negative range implies that the
process of releasing adsorbed hydrogen from the catalyst is energetically challenging. High values of *GHD in
both positive and negative range inhibit the activity of theHER catalyst. Therefore, for an efficientHER
electrocatalyst, the value of *GHD should be as close to zero as possible. In this study, we estimated *GHD of
hydrogen adsorption onTM@GTY single atom catalysts to determine theHER catalytic response of transition
metal SACs anchored on graphtriyne. This allowed us to evaluate theHER catalytic performance of the proposed
catalysts and identify themost promising candidates for efficiently catalyzing theHERprocess.

From table 3, since the *GHD value of Zn@GTY (−0.48 eV) is closer to the ideal value ( *GHD = 0 eV), the
adsorption of hydrogen and the release of hydrogen from the catalyst surface will be an easy and efficient process.
This is because the *GHD value of Zn@GTY is closer to the ideal value forHERprocess. As a result, the optimum
catalytic performance for theHERprocess is provided by the Zn single atom anchored on graphtriyne quantum
dot.Ni@GTY catalyst has also low *GHD value (−1.07 eV). Therefore, Ni@GTY can also showbetter catalytic
activity forHER.Our findings indicate that Zn@GTY andNi@GTY single atom catalysts exhibit superiorHER
catalytic performancewhen compared to other catalysts such as hydrogen on coronene and pyrene polycyclic
aromatic hydrocarbons (PAHs), as their reported adsorption energies fall within the range of 0.6−1.4 and 0.6
−1.6 eV, respectively [59]. These results suggest that Zn@GTY andNi@GTY SACsmay be considered as
promising candidates for effectively catalyzing the hydrogen evolution reaction. The superior performance of
these catalysts highlights the potential of graphtriyne quantumdot as a supportmaterial and transitionmetal
atoms as single atom centers for the development of highly efficient and low-cost electrocatalysts for the
hydrogen evolution reaction.

The estimated *GHD values for Fe@GTY, Co@GTY, andCu@GTY are−2.39 eV,−2.66 eV, and−2.93 eV,
respectively. These high negative values of *GHD suggests that hydrogen is chemisorbed and that the process of
releasing it is difficult. As a result, the Fe@GTY, Co@GTY, andCu@GTYhave poor efficiency forHER catalysis.

In comparisonwith existing literature onmetal-doped graphynes, our study onmetal@GTY catalysts builds
upon the foundational works reviewed by Li et al, [60] and Song et al, [61]whoprimarily focus onmetal@GDY
catalysts. Ourfindings alignwith previous investigations into the electrocatalytic benefits ofmetal-doping in
graphyne and its analogues. Specifically, ourwork can be contextualized alongside the research conducted by
Xue et al in 2018, whereNi0/GDYand Fe0/GDY electrocatalysts were synthesized and evaluated for their
hydrogen evolution reaction (HER) performance [62]. Xue et al reported high catalytic activities for both
Ni0/GDY and Fe0/GDY. In our study, Ni@GTY also demonstrated improvedHERperformance, corroborating
thefindings of Xue et alHowever, it is noteworthy that Fe@GTY exhibited suboptimal activity forHER in our
system, diverging from the high performance observed for Fe0/GDY in their study. This discrepancy potentially
highlights the sensitivity ofHERperformance to the specific structure and electronic configurations of the
graphyne framework.

In order to investigate the interaction between the adsorbedH* and the TM@GTY single atom catalysts, we
conducted density of states (DOS) and frontiermolecular orbitals (FMO) analyses. Figure 5 shows theDOS
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spectra of theH*-TM@GTY complexes, and figure 6 provides a graphical representation of the frontier
molecular orbitals (HOMOandLUMO). The interaction between theH* andTM@GTYSACs leads to
variations in theHOMO–LUMOenergy gap (Egap) and in theDOS spectrum. TheDOS spectra of the
H*-TM@GTY complexes clearly show that, after hydrogen adsorption, additional peaks appear for hydrogen at
the Fermi level or slightly below it, indicating the adsorption ofH* on theTM@GTY.

Figure 5.TDOS and PDOSofH* adsorbed TM@GTY SACs.
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As a result of the interaction betweenH* and the Zn@GTY catalyst, theHOMO–LUMOgap (Egap) is
significantly reduced from4.18 eV to 3.20 eV. Conversely, the Egap for Fe@GTY andCu@GTY is significantly
widened after the adsorption of hydrogenwhile slight variations in Egap is observed for Co@GTY andNi@GTY.
As can be seen in the illustration of theHOMOorbital ofH*-Ni@GTY,H*-Cu@GTY, andH*-Zn@GTY
complexes, both the adsorbedH* atom and themetal atomhaveHOMOorbital’s electronic density. However,
in the case ofH*-Cu@GTY andH*-Zn@GTY complexes, there is noHOMOorbital’s electronic density on the
graphtriyne. ForH*-Fe@GTY andH*-Co@GTY complexes, theHOMOorbital’s electronic density is
completely from the TM@GTY and absent from the adsorbed hydrogen.

Figure 6. Isodensities ofHOMOand LUMOofH*-TM@GTY.
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4. Conclusions

This study employedfirst principles density functional theory simulations to investigate the potential of single
transitionmetal atoms anchored on graphtriyne quantumdots as catalysts for the hydrogen evolution reaction
(HER). By utilizing five transitionmetals (Fe, Co,Ni, Cu, andZn) as single atom centers and graphtriyne
quantumdot as a supportmaterial, we designed a series of single atom catalysts (SACs) and examined their
electronic structures andHER catalytic performance. Our results indicate that the TM@GTYSACs exhibit good
stability, with the highest interaction energy observed forNi@GTY SAC (−78.25 kcal mol−1) followed by
Fe@GTY (−76.35 kcal mol−1). Furthermore, the Zn@GTY andNi@GTY SACs displayed excellentHER
performance, with smallΔGH* values of−0.48 eV and−1.07 eV, respectively. Thesefindings suggest that
transitionmetal atoms supported on graphtriyne quantumdotmay be a promising approach for the
development of low-costHER catalysts. The results of this studymay pave theway for further exploration of this
class of catalysts for hydrogen production.
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